Shanghai StairMed Technology Co., Ltd.

- 3/F, Unit 1, Building 4, 160 Basheng Road, China(Shanghai) Pilot Free Trade Zone
- https://www.stairmed.com/
- 021-80510178
- contact@stairmed.com

STAIRMED

Full-stack neuroelectrophysiological solution

Long-term stability

Multi-brain region

High-throughput

Customizable

About StairMed

Shanghai StairMed Technology Co., Ltd. (abbreviation StairMed) was established in August 2021 and is based in Shanghai. It is an innovative technology company focusing on implantable brain-computer interface.

Based on the implantable brain-computer interface technology, the company is committed to the research and development of neural interface (electrode), the development of implantable brain-computer interface platform system, and the clinical application transformation of related scientific research results, aiming to achieve more effective clinical treatments of neurological diseases.

TABLE OF CONTENTS

目录

```
P01 / Full-stack neuroelectrophysiological solution

P02 / HNE ultra-flexible micro-nano electrode

P06 / StairPlex High-throughput neural signal acquisition system

P07 / Headstage

P08 / Data Acquisition and Analysis Software

P09 / Signal generator

P10 / AUFEIS Assisted Implantation Equipment

P11 / Research support
```


A full-Stack neurophysiological solution based on hyperflexible micro-nano electrodes

StairMed focuses on serving brain-computer interface and basic scientific research in neuroscience, with its self-developed and manufactured ultra-flexible micro-nano electrodes as the core product, providing a full-stack solution to unravel the essence of neuroscience.

The full-stack solution of StairMed includes HNE ultra-flexible micro-nano electrode, headstage, StairPlex High-throughput neural signal acquisition system, and AUFEIS portable implantation robot, providing a full set of advanced equipments and technical services for scientific research users around the world.

1

HNE are mainly used in in-vivo electrophysiology scientific

research, and is generally implanted into the brains of living animals (mice, rats, non-human primates, etc.) for acute or chronic large-scale neural data acquisition, which can support the collection of local field potentials (LFP) and action potentials.

Product features

Long-term stability Stable signal recording ≥300 days

High-biocompatibility no immune epilepsy scars, no strong immune response

Customizable

The structure and site arrangement of the electrodes are customized according to the needs based on different research objects, target brain regions, and experimental paradigms .

High-precision

Capable of recording neural activity at the single-neuron level

High-throughput

Simultaneous recording of 1024 channels

Ultra-fineness

The cross-section of the electrode shank is comparable to the size of a neuron.

3 -

HNE ultra-flexible micro-nano electrode

model	total locus	total shank	single shank locus row	locus cover length(mm)	locus size (µm)	locus spacing (µm)	Tungsten needle spacing(mm)
HNE-128-2-1-0.55- 50*50-65-1.00-6.5-SE	128	2	1	4	50 X 50	65	1
HNE-128-4-1-1.10- 16*25-35-0.25-4-SE	128	4	1	1.1	16 X 25	35	0.25
HNE-128-4-2-0.55- 16*25-35-0.25-4-SE	128	4	2	0.55	16 X 25	35	0.25

^{*} Different signal acquisition equipment might cause the channel sequencing to differ More details could be found in the electrode CHANNAL MAP.

4

The StairPlex System is a scalable, high-throughput signal acquisition system that captures, processes, and analyzes action potentials (Spike), local field potential activity (LFP), and other neuroelectrophysiological signals to meet a wide range of neuroscience research needs.

The system consists of a data acquisition control box, a data transmission line, and a headstage.

Product size: 218.5 x 190 x 68.5 Signal types: Spike, LFP, ECoG

Data format: SPR

Compatibility: compatible and wired Headstage

Sampling rate : up to 30 k Hz Product weight : 1750g

Sampling accuracy: 16 bits

Sampling throughput : 0.1Hz-7.5k Hz Number of supported channels : 128-1024 Impedance measuring range: 10 K Ω -10 M Ω

Input interface: 2-channels digital input, 2-channels analog input

Output interface: 2-channels digital output, 2-channels analog output

Scalability: Headstage has 128 modules in a single module, and a maximum of 8 modules

Interpolation 128-channel headstage

Number of channels: 128

Input interface: ZIF-71 pins x 2

Data interface: Type-c

Size: 19mm x 7mm

Transmission interface: LVDS protocol,

high-speed serial digital data

Extrapolation type 128-channel headstage

Number of channels: 128

Input interface: ZIF-71 pins x 2

Data interface: Type-c Size: 25mm x 18mm

Transmission interface: LVDS protocol,

high-speed serial digital data

7 ———

Data Acquisition and Analysis Software

数据采集分析软件

StairPlex software is a powerful electrophysiological signal acquisition and data analysis software.

Dynamic visualization

A single interface supports the display of 128 channels Up to 1024 channels can be displayed simultaneously Multiple types of data are displayed synchronously

Fully functional

Neural signal acquisition display

Synchronous recording of behavior signals

Electrode impedance test function

Real-time online filtering and noise reduction

Real-time analytics

Discharge frequency analysis ISI
Spectrum Analysis, RMS noise analysis
Signal-to-noise ratio analysis
Channel activity topology map

Area of application

The signal generator (NS-1.0) is available as an accessory to the Stairplex and provides a reliable standard signal source (spike analog and sine wave) for pre-use or periodic performance testing of invivo neurophysiological signal acquisition systems .

Product advantage

- 1.It supports the simultaneous output of multiple signals from different output interfaces to meet the needs of customers for simultaneous acquisition and analysis of multi-channel signals in the process of data acquisition and system verification.
- 2.The ability to generate high-precision signal waveforms enables accurate measurements, reduces errors, and improves the reliability of test results.

Product parameters

Types of connectors	Pin, Omnetics connecto				
Type Specification	NS-1.0				
Sampling accuracy	16bits				
Charging voltage	5V				
Charging current	500mA	Q	Neural Simulator	6 5 3 1	Neural Sine
Charging interface	Туре-с	STAIRMED STAIRMED	Chan	(ON OFF
Output signal type	Spike, Sine		Chan	111111111111111111111111111111111111111	
		● Batte	ery	OPEN	
		● Sign	al		

8

AUFEIS Assisted implantation equipment

Precise Adapt to the animal brain stereotaxic instrument to positioning accurately locate the targeted brain region **Automatic** Set the parameters by yourself, implantation one-click automatic implantation One-button Set the withdrawal parameters to needle

avoid taking out the flexible electrode.

withdrawal

Efficient and Ergonomic design, convenient and efficient operation, stable and rapid implantation

Implant auxiliary control software

3D intuitive display Efficient operation to improve the success rate of implantation

Precise positioning One-button needle withdrawal Automatic implantation

Research support

A Ultraflexible Electrode Array for Long-Term Recording and Decoding of Intraspinal Neuronal Activity

- The biocompatible SC hyperflexible electrode array (SHEA) enables stable single neuron recordings in mice for more than 2 months.
- SHEA maintains stable impedance, signal-to-noise ratio, single-unit yield, and spike amplitude after implantation into mouse SC.
- Multi-unit signals recorded from the SC ventral horn can predict the mouse's movement trajectory with a high decoding coefficient of up to 0.95. Moreover, during step cycles, the neural trajectory of spikes and low-frequency local field potential (LFP) signal exhibits periodic geometry patterns.

Fan J, Li X, Wang P, et al., Adv Sci. 2023.